Sperimentazione genica COVID: richiesta immediata moratoria globale

Vaccini mRNA per il COVID-19: lezioni apprese dalle sperimentazioni di registrazione e dalla campagna di vaccinazione globale

M. Nathaniel Mead • Stephanie Seneff • Russ Wolfinger • Jessica Rose • Kris Denhaerynck • Steve Kirsch • Peter A. McCullough

Fonte: CUREUS

Pubblicato: 24 gennaio 2024

DOI: 10.7759/cureus.52876

( vedi anche: La tossicità dei vaccini a mRNA )

Peer-reviewed
Citare questo articolo come: Mead M, Seneff S, Wolfinger R, et al. (24 gennaio 2024) COVID-19 mRNA Vaccines: Lessons Learned from the Registrational Trials and Global Vaccination Campaign. Cureus 16(1): e52876. doi:10.7759/cureus.52876

Sommario

La nostra comprensione delle vaccinazioni contro il COVID-19 e del loro impatto sulla salute e sulla mortalità si è evoluta sostanzialmente dalla prima introduzione del vaccino. I rapporti pubblicati dagli studi randomizzati originali di fase 3 hanno concluso che i vaccini mRNA contro il COVID-19 potrebbero ridurre notevolmente i sintomi del COVID-19. Nel frattempo sono emersi problemi con i metodi, l’esecuzione e la rendicontazione di questi studi cruciali. La rianalisi dei dati dello studio Pfizer ha identificato aumenti statisticamente significativi degli eventi avversi gravi (SAE) nel gruppo del vaccino. Numerosi SAE sono stati identificati in seguito all’autorizzazione all’uso di emergenza (EUA), tra cui morte, cancro, eventi cardiaci e vari disturbi autoimmuni, ematologici, riproduttivi e neurologici. Inoltre, questi prodotti non sono mai stati sottoposti ad adeguati test di sicurezza e tossicologici secondo gli standard scientifici precedentemente stabiliti. Tra gli altri argomenti principali affrontati in questa revisione narrativa ci sono le analisi pubblicate sui gravi danni agli esseri umani, i problemi di controllo della qualità e le impurità legate ai processi, i meccanismi alla base degli eventi avversi (EA), la base immunologica per l’inefficacia del vaccino e le tendenze della mortalità basate su i dati della sperimentazione registrativa. Lo squilibrio rischio-beneficio dimostrato dalle prove fino ad oggi controindica ulteriori iniezioni di richiamo e suggerisce che, come minimo, le iniezioni di mRNA dovrebbero essere rimosse dal programma di immunizzazione infantile fino a quando non saranno condotti adeguati studi tossicologici e di sicurezza. L’approvazione da parte dell’agenzia federale dei vaccini mRNA COVID-19 su una base di copertura generale a livello di popolazione non è stata supportata da una valutazione onesta di tutti i dati di registrazione rilevanti e da una considerazione commisurata dei rischi rispetto ai benefici. Considerati gli SAE estesi e ben documentati e il rapporto danno-ricompensa inaccettabilmente elevato, esortiamo i governi a sostenere una moratoria globale sui prodotti a base di mRNA modificato fino a quando non verranno risposte tutte le domande rilevanti relative alla causalità, al DNA residuo e alla produzione aberrante di proteine.

(omissis)

Conclusioni

Una valutazione attenta e obiettiva della sicurezza dei prodotti mRNA di COVID-19 è fondamentale per sostenere gli standard etici e un processo decisionale basato sull’evidenza. La nostra revisione narrativa riguardante le sperimentazioni registrative e le conseguenze dell’EUA offre approfondimenti basati sull’evidenza su come questi vaccini genetici siano stati in grado di entrare nel mercato. Nel contesto dei due studi cardine, la sicurezza non è mai stata valutata in modo commisurato agli standard scientifici precedentemente stabiliti né per i vaccini né per i GTP, la classificazione più accurata di questi prodotti. Molti risultati chiave degli studi clinici sono stati riportati in modo errato o completamente omessi dai rapporti pubblicati. I consueti protocolli di test di sicurezza e requisiti tossicologici sono stati aggirati dalla FDA e dai produttori di vaccini, e la conclusione prematura di entrambi gli studi ha evitato qualsiasi valutazione imparziale dei potenziali SAE a causa di un periodo di tempo insufficiente per una corretta valutazione degli studi. È stato solo dopo l’EUA che le gravi conseguenze biologiche della fretta degli studi sono diventate evidenti, con numerosi SAE cardiovascolari, neurologici, riproduttivi, ematologici, maligni e autoimmuni identificati e pubblicati nella letteratura medica sottoposta a revisione paritaria. Inoltre, i vaccini mRNA per il COVID-19 prodotti tramite il Processo 1 e valutati negli studi non erano gli stessi prodotti poi distribuiti in tutto il mondo; tutti i prodotti mRNA del COVID-19 rilasciati al pubblico sono stati prodotti tramite il Processo 2 e hanno dimostrato di presentare vari gradi di contaminazione del DNA. L’incapacità delle autorità di regolamentazione di divulgare finora le impurità legate al processo (ad esempio, SV40) ha ulteriormente aumentato le preoccupazioni relative alla sicurezza e alla supervisione del controllo di qualità dei processi di produzione del vaccino mRNA.

Dall’inizio del 2021, l’eccesso di morti, eventi cardiaci, ictus e altri SAE sono stati spesso erroneamente attribuiti al COVID-19 piuttosto che alle vaccinazioni contro l’mRNA del COVID-19. L’errata attribuzione degli SAE al COVID-19 spesso può essere dovuta all’amplificazione degli effetti avversi quando le iniezioni di mRNA sono seguite dall’infezione della sottovariante SARS-CoV-2. Le lesioni causate dai prodotti dell’mRNA si sovrappongono sia ai PACS che alla grave malattia acuta da COVID-19, spesso oscurando i contributi eziologici dei vaccini. Iniezioni multiple di richiamo sembrano causare disfunzioni immunitarie, contribuendo così paradossalmente ad una maggiore suscettibilità alle infezioni da COVID-19 con dosi successive. Per la stragrande maggioranza degli adulti di età inferiore ai 50 anni, i benefici percepiti dei potenziatori dell’mRNA sono ampiamente controbilanciati dai loro potenziali danni invalidanti e potenzialmente letali. Anche i danni potenziali per gli anziani sembrano essere eccessivi. Considerati i SAE ben documentati e l’inaccettabile rapporto danno-ricompensa, esortiamo i governi a sostenere e applicare una moratoria globale su questi prodotti di mRNA modificati fino a quando tutte le domande rilevanti relative alla causalità, al DNA residuo e alla produzione aberrante di proteine non avranno risposta.

Riferimenti

  1. Polack FP, Thomas SJ, Kitchin N, et al.: Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine. N Engl J Med. 2020, 383:2603-15. 10.1056/NEJMoa2034577
  2. Baden LR, El Sahly HM, Essink B, et al.: Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. N Engl J Med. 2021, 384:403-16. 10.1056/NEJMoa2035389
  3. Singh JA, Kochhar S, Wolff J: Placebo use and unblinding in COVID-19 vaccine trials: recommendations of a WHO Expert Working Group. Nat Med. 2021, 27:569-70. 10.1038/s41591-021-01299-5
  4. Kaplan KM, Marder DC, Cochi SL, et al.: Mumps in the workplace. Further evidence of the changing epidemiology of a childhood vaccine-preventable disease. JAMA. 1988, 260:1434-8. 10.1001/jama.260.10.1434
  5. Vaccine Research & Development: How can COVID-19 vaccine development be done quickly and safely?. (2013). Accessed: October 16, 2023: https://coronavirus.jhu.edu/vaccines/timeline.
  6. New York State Department of Health: The science behind vaccine research and testing. (2023). Accessed: October 16, 2023: https://www.health.ny.gov/prevention/immunization/vaccine_safety/science.htm.
  7. Did National Security Imperatives Compromise COVID-19 Vaccine Safety?. (2022). Accessed: September 30, 2023: https://www.trialsitenews.com/a/did-national-security-imperatives-compromise-covid-19-vaccine-safety-adfea242.
  8. America’s Long, Expensive, and Deadly Love Affair with mRNA. (2023). Accessed: March 15, 2023: https://petermcculloughmd.substack.com/p/americas-long-expensive-and-deadly.
  9. Wagner R, Hildt E, Grabski E, et al.: Accelerated development of COVID-19 vaccines: technology platforms, benefits, and associated risks. Vaccines (Basel). 2021, 9:747. 10.3390/vaccines9070747
  10. Conklin L, Hviid A, Orenstein WA, Pollard AJ, Wharton M, Zuber P: Vaccine safety issues at the turn of the 21st century. BMJ Glob Health. 2021, 6:10.1136/bmjgh-2020-004898
  11. Alqatari S, Ismail M, Hasan M, et al.: Emergence of post COVID-19 vaccine autoimmune diseases: a single center study. Infect Drug Resist. 2023, 16:1263-78. 10.2147/IDR.S394602
  12. Immunization Safety Review: SV40 Contamination of Polio Vaccine and Cancer. Stratton K, Almario DA, McCormick MC (ed): National Academies Press (US), Washington DC; 2002. https://www.ncbi.nlm.nih.gov/books/NBK221112/.
  13. Buonocore SM, van der Most RG: Narcolepsy and H1N1 influenza immunology a decade later: what have we learned?. Front Immunol. 2022, 13:902840. 10.3389/fimmu.2022.902840
  14. Greenstreet RL: Estimation of the probability that Guillain-Barre syndrome was caused by the swine flu vaccine: US experience (1976-77). Med Sci Law. 1984, 24:61-7. 10.1177/002580248402400110
  15. Doshi P: Covid-19 vaccines: in the rush for regulatory approval, do we need more data?. BMJ. 2021, 373:n1244. 10.1136/bmj.n1244
  16. Thorp HH: A dangerous rush for vaccines. Science. 2020, 369:885. 10.1126/science.abe3147
  17. Torreele E: The rush to create a COVID-19 vaccine may do more harm than good. BMJ. 2020, 370:m3209. 10.1136/bmj.m3209
  18. Lalani HS, Nagar S, Sarpatwari A, Barenie RE, Avorn J, Rome BN, Kesselheim AS: US public investment in development of mRNA covid-19 vaccines: retrospective cohort study. BMJ. 2023, 380:e073747. 10.1136/bmj-2022-073747
  19. Nayak RK, Lee CC, Avorn J, Kesselheim AS: Public-sector contributions to novel biologic drugs. JAMA Intern Med. 2021, 181:1522-5. 10.1001/jamainternmed.2021.3720
  20. BARDA Strategic Plan, 2022-2026: Fortifying the Nation’s Health Security. Biomedical Advanced Research and Development Authority, Washington, D.C.; 2022. https://www.medicalcountermeasures.gov/media/38717/barda-strategic-plan-2022-2026.pdf.
  21. Banoun H: mRNA: vaccine or gene therapy? he safety regulatory issues. Int J Mol Sci. 2023, 24:10514. 10.3390/ijms241310514
  22. Guerriaud M, Kohli E: RNA-based drugs and regulation: toward a necessary evolution of the definitions issued from the European Union legislation. Front Med (Lausanne). 2022, 9:1012497. 10.3389/fmed.2022.1012497
  23. Van Lint S, Renmans D, Broos K, et al.: The ReNAissanCe of mRNA-based cancer therapy. Expert Rev Vaccines. 2015, 14:235-51. 10.1586/14760584.2015.957685
  24. Cosentino M, Marino F: Understanding the pharmacology of COVID-19 mRNA vaccines: playing dice with the spike?. Int J Mol Sci. 2022, 23:10881. 10.3390/ijms231810881
  25. Trougakos IP, Terpos E, Alexopoulos H, et al.: Adverse effects of COVID-19 mRNA vaccines: the spike hypothesis. Trends Mol Med. 2022, 28:542-54. 10.1016/j.molmed.2022.04.007
  26. Seneff S, Nigh G, Kyriakopoulos AM, McCullough PA: Innate immune suppression by SARS-CoV-2 mRNA vaccinations: the role of G-quadruplexes, exosomes, and microRNAs. Food Chem Toxicol. 2022, 164:113008. 10.1016/j.fct.2022.113008
  27. Çalık Ş, Demir İ, Uzeken E, Tosun S, Özkan Özdemir H, Coşkuner SA, Demir S: Investigation of the relationship between the immune responses due to COVID-19 vaccine and peripheral bloodlymphocyte subtypes of healthcare workers [Article in Turkish]. Mikrobiyol Bul. 2022, 56:729-39.
  28. Heinz FX, Stiasny K: Distinguishing features of current COVID-19 vaccines: knowns and unknowns of antigen presentation and modes of action. NPJ Vaccines. 2021, 6:104. 10.1038/s41541-021-00369-6
  29. Shir-Raz Y, Elisha E, Martin B, Ronel N, Guetzkow J: Censorship and suppression of Covid-19 heterodoxy: tactics and counter-tactics. Minerva. 2022, 1-27. 10.1007/s11024-022-09479-4
  30. We’re Fighting the Covid Censors. (2023). Accessed: January 3, 2024: https://thespectator.com/topic/were-fighting-the-covid-censors-censorship/.
  31. Doshi P: Will COVID-19 vaccines save lives? Current trials aren’t designed to tell us. BMJ. 2020, 371:m4037. 10.1136/bmj.m4037
  32. Pfizer: COVID-19 vaccine maker pledge. (2020). Accessed: November 24, 2023: https://www.pfizer.com/news/announcements/covid-19-vaccine-maker-pledge.
  33. Meo SA, Bukhari IA, Akram J, Meo AS, Klonoff DC: COVID-19 vaccines: comparison of biological, pharmacological characteristics and adverse effects of Pfizer/BioNTech and Moderna vaccines. Eur Rev Med Pharmacol Sci. 2021, 25:1663-9. 10.26355/eurrev_202102_24877
  34. ‘Absolutely remarkable’: No one who got Moderna’s vaccine in trial developed severe COVID-19. (2020). Accessed: October 16, 2023: https://www.science.org/content/article/absolutely-remarkable-no-one-who-got-modernas-vaccine-trial-developed-severe-….
  35. Thomas SJ, Moreira ED Jr, Kitchin N, et al.: Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine through 6 months. N Engl J Med. 2021, 385:1761-73. 10.1056/NEJMoa2110345
  36. Plausibility But Not Science Has Dominated Public Discussions of the Covid Pandemic. (2022). Accessed: October 16, 2023: https://brownstone.org/articles/plausibility-but-not-science-has-dominated-public-discussions-of-the-covid-pandemic/.
  37. Peter Doshi: Pfizer and Moderna’s “95% effective” vaccines—we need more details and the raw data. (2021). Accessed: October 16, 2023: https://blogs.bmj.com/bmj/2021/01/04/peter-doshi-pfizer-and-modernas-95-effective-vaccines-we-need-more-details-and-t….
  38. Interim Report – Adolescent 6-Month Update: A Phase 1/2/3, Placebo-Controlled, Randomized, Observer-Blind, Dose-Finding Study to Evaluate the Safety, Tolerability, Immunogenicity, and Efficacy of SARS-CoV-2 RNA Vaccine Candidates Against COVID-19 in Healthy Individuals. Pfizer Inc, New York, NY; 2021. 10.17226/10534https://data.parliament.uk/DepositedPapers/Files/DEP2023-0138/Clinical_Study_Report_Part_2.pdf.
  39. Moderna Clinical study protocol: A phase 3, randomized, stratified, observer-blind, placebo-controlled study to evaluate the efficacy, safety, and immunogenicity of mRNA-1273 SARS-CoV-2 vaccine in adults aged 18 years and older. Protocol No. mRNA-1273-P301. (2020). (2020). Accessed: December 20, 2023: https://www.modernatx.com/sites/default/files/mRNA-1273-P301-Protocol.pdf .
  40. Pezzullo AM, Axfors C, Contopoulos-Ioannidis DG, Apostolatos A, Ioannidis JP: Age-stratified infection fatality rate of COVID-19 in the non-elderly population. Environ Res. 2023, 216:114655. 10.1016/j.envres.2022.114655
  41. Chenchula S, Vidyasagar K, Pathan S, et al.: Global prevalence and effect of comorbidities and smoking status on severity and mortality of COVID-19 in association with age and gender: a systematic review, meta-analysis and meta-regression. Sci Rep. 2023, 13:6415. 10.1038/s41598-023-33314-9
  42. Thornley S, Morris AJ, Sundborn G, Bailey S: How fatal is COVID-19 compared with seasonal influenza? The devil is in the detail [Rapid Response]. BMJ. 2020,
  43. Islam N, Shkolnikov VM, Acosta RJ, et al.: Excess deaths associated with covid-19 pandemic in 2020: age and sex disaggregated time series analysis in 29 high income countries. BMJ. 2021, 373:n1137. 10.1136/bmj.n1137
  44. Baral S, Chandler R, Prieto RG, Gupta S, Mishra S, Kulldorff M: Leveraging epidemiological principles to evaluate Sweden’s COVID-19 response. Ann Epidemiol. 2021, 54:21-6. 10.1016/j.annepidem.2020.11.005
  45. Barbari A: COVID-19 vaccine concerns: fact or fiction?. Exp Clin Transplant. 2021, 19:627-34. 10.6002/ect.2021.0056
  46. Thames AH, Wolniak KL, Stupp SI, Jewett MC: Principles learned from the international race to develop a safe and effective COVID-19 vaccine. ACS Cent Sci. 2020, 6:1341-7. 10.1021/acscentsci.0c00644
  47. Montano D: Frequency and associations of adverse reactions of COVID-19 vaccines reported to pharmacovigilance systems in the European Union and the United States. Front Public Health. 2021, 9:756633. 10.3389/fpubh.2021.756633
  48. Yan MM, Zhao H, Li ZR, et al.: Serious adverse reaction associated with the COVID-19 vaccines of BNT162b2, Ad26.COV2.S, and mRNA-1273: gaining insight through the VAERS. Front Pharmacol. 2022, 13:921760. 10.3389/fphar.2022.921760
  49. Classen B: US COVID-19 vaccines proven to cause more harm than good based on pivotal clinical trial data analyzed using the proper scientific endpoint, “all cause severe morbidity”. Trends Int Med. 2021, 1:1-6.
  50. Fraiman J, Erviti J, Jones M, Greenland S, Whelan P, Kaplan RM, Doshi P: Serious adverse events of special interest following mRNA COVID-19 vaccination in randomized trials in adults. Vaccine. 2022, 40:5798-805. 10.1016/j.vaccine.2022.08.036
  51. Mörl F, Günther M, Rockenfeller R: Is the harm-to-benefit ratio a key criterion in vaccine approval?. Front Med (Lausanne). 2022, 9:879120. 10.3389/fmed.2022.879120
  52. Benn CS, Schaltz-Buchholzer F, Nielsen S, et al.: Randomised clinical trials of COVID-19 vaccines: do adenovirus-vector vaccines have beneficial non-specific effects?. Lancet preprint. April. 5:2022. 10.2139/ssrn.4072489
  53. Have People Been Given the Wrong Vaccine?. (2022). Accessed: October 16, 2023: https://brownstone.org/articles/have-people-been-given-the-wrong-vaccine/.
  54. Michels CA, Perrier D, Kunadhasan J, et al.: Forensic analysis of the 38 subject deaths in the 6- month interim report of the Pfizer/BioNTech BNT162b2 mRNA vaccine clinical trial. IJVTPR. 2023, 3:973-1009. 10.56098/ijvtpr.v3i1.85
  55. Vaccines and Related Biological Products Advisory Committee Meeting, September 17, 2021. FDA Briefing Document: Application for Licensure of a Booster Dose for COMIRNATY (COVID-19 Vaccine, mRNA). US Food and Drug Administration, White Oak, MD; 2021. https://www.fda.gov/media/152176/download.
  56. Summary Basis for Regulatory Action. Review Committee’s Recommendation to Approve Pfizer-BioNTech product, COMIRNATY (COVID-19 Vaccine, mRNA). US Food and Drug Administration, White Oak, MD; 2021. https://www.fda.gov/media/151733/download.
  57. Oster ME, Shay DK, Su JR, et al.: Myocarditis cases reported after mRNA-based COVID-19 vaccination in the US from December 2020 to August 2021. JAMA. 2022, 327:331-40. 10.1001/jama.2021.24110
  58. Rees AR: Viruses, vaccines and cardiovascular effects. Br J Cardiol. 2022, 29:16. 10.5837/bjc.2022.016
  59. Almas T, Rehman S, Mansour E, et al.: Epidemiology, clinical ramifications, and cellular pathogenesis of COVID-19 mRNA-vaccination-induced adverse cardiovascular outcomes: a state-of-the-heart review. Biomed Pharmacother. 2022, 149:112843. 10.1016/j.biopha.2022.112843
  60. Gao J, Feng L, Li Y, et al.: A systematic review and meta-analysis of the association between SARS-CoV-2 vaccination and myocarditis or pericarditis. Am J Prev Med. 2023, 64:275-84. 10.1016/j.amepre.2022.09.002
  61. Yasmin F, Najeeb H, Naeem U, et al.: Adverse events following COVID-19 mRNA vaccines: a systematic review of cardiovascular complication, thrombosis, and thrombocytopenia. Immun Inflamm Dis. 2023, 11:e807. 10.1002/iid3.807
  62. Shiravi AA, Ardekani A, Sheikhbahaei E, Heshmat-Ghahdarijani K: Cardiovascular complications of SARS-CoV-2 vaccines: an overview. Cardiol Ther. 2022, 11:13-21. 10.1007/s40119-021-00248-0
  63. Jeet Kaur R, Dutta S, Charan J, et al.: Cardiovascular adverse events reported from COVID-19 vaccines: a study based on WHO database. Int J Gen Med. 2021, 14:3909-27. 10.2147/IJGM.S324349
  64. Did the Pfizer Trial Show the Vaccine Increases Heart Disease Deaths?. (2022). Accessed: October 16, 2023: https://chrismasterjohnphd.substack.com/p/did-the-pfizer-trial-show-the-vaccine.
  65. Brown RB: Outcome reporting bias in COVID-19 mRNA vaccine clinical trials. Medicina (Kaunas). 2021, 57:199. 10.3390/medicina57030199
  66. Olliaro P, Torreele E, Vaillant M: COVID-19 vaccine efficacy and effectiveness-the elephant (not) in the room. Lancet Microbe. 2021, 2:e279-80. 10.1016/S2666-5247(21)00069-0
  67. Ali T, Mujawar S, Sowmya AV, Saldanha D, Chaudhury S: Dangers of mRNA vaccines. Ind Psychiatry J. 2021, 30:S291-3. 10.4103/0972-6748.328833
  68. US Food and Drug Administration: Roster of the vaccines and related biological products advisory committee. (2020). Accessed: December 20, 2023: https://www.fda.gov/advisory-committees/vaccines-and-related-biological-products-advisory-committee/roster-vaccines-a….
  69. Communicating Risks and Benefits: An Evidence-Based User’s Guide. Fischhoff B, Brewer N, Downs J (ed): US Department of Health and Human Services, Silver Spring, MA; 2011. https://www.fda.gov/about-fda/reports/communicating-risks-and-benefits-evidence-based-users-guide.
  70. Adams K, Riddles JJ, Rowley EA, et al.: Number needed to vaccinate with a COVID-19 booster to prevent a COVID-19-associated hospitalization during SARS-CoV-2 Omicron BA.1 variant predominance, December 2021-February 2022, VISION Network: a retrospective cohort study. Lancet Reg Health Am. 2023, 23:100530. 10.1016/j.lana.2023.100530
  71. Gøtzsche PC, Demasi M: Serious harms of the COVID-19 vaccines: a systematic review [PREPRINT]. medRxiv. 2022, 10.1101/2022.12.06.22283145
  72. Gøtzsche PC: Deadly Medicines and Organized Crime: How Big Pharma has Corrupted Health Care. CRC Press, Boca Raton, FL; 2013.
  73. Gøtzsche PC: Vaccines: Truth, Lies, and Controversy . Skyhorse Publishing, New York; 2020.
  74. Gøtzsche PC: Made in China: the coronavirus that killed millions of people. Indian J Med Ethics. 2022, VII:254. 10.20529/IJME.2021.098
  75. Are Adverse Events in Covid-19 Vaccine Trials Under-Reported?. (2021). Accessed: October 16, 2023: https://maryannedemasi.com/publications/f/are-adverse-events-in-covid-19-vaccine-trials-under-reported.
  76. Hazell L, Shakir SA: Under-reporting of adverse drug reactions : a systematic review. Drug Saf. 2006, 29:385-96. 10.2165/00002018-200629050-00003
  77. Johnson RM, Doshi P, Healy D: Covid-19: should doctors recommend treatments and vaccines when full data are not publicly available?. BMJ. 2020, 370:m3260. 10.1136/bmj.m3260
  78. Summary of Clinical Safety. Pfizer Inc., New York, NY; 2021. https://phmpt.org/wp-content/uploads/2021/12/STN-125742_0_0-Section-2.7.4-summary-clin-safety.pdf.
  79. Murphy SL, Kochanek KD, Xu J, Arias E.: Mortality in the United States, 2020. NCHS Data Brief. 2021, No. 427:
  80. Schreckenberg R, Woitasky N, Itani N, Czech L, Ferdinandy P, Schulz R: Cardiac side effects of RNA-based SARS-CoV-2 vaccines: hidden cardiotoxic effects of mRNA-1273 and BNT162b2 on ventricular myocyte function and structure. Br J Pharmacol. 2024, 181:345-61. 10.1111/bph.16262
  81. Vaccines and Related Biological Products Advisory Committee, December 10, 2020. FDA Briefing Document: Pfizer-BioNTech COVID-19 Vaccine. US Food and Drug Administration, White Oak, MD; 2020. https://www.fda.gov/media/144245/download.
  82. Palmer M, Bhakdi S, Hooker B, et al.: Evidence of fraud in Pfizer’s clinical trials. mRNA Vaccine Toxicity. Doctors for COVID Ethics, Amsterdam, The Netherlands; 2023. 37-9.
  83. Assessment Report: Comirnaty. European Medicines Agency, Amsterdam, The Netherlands; 2020. https://www.ema.europa.eu/en/documents/assessment-report/comirnaty-epar-public-assessment-report_en.pdf.
  84. Anomalous Patterns of Mortality and Morbidity in Pfizer’s Covid-19 Vaccine Trial. (2023). Accessed: October 20, 2023: https://wherearethenumbers.substack.com/p/anomalous-patterns-of-mortality-and.
  85. Thacker PD: Covid-19: researcher blows the whistle on data integrity issues in Pfizer’s vaccine trial. BMJ. 2021, 375:n2635. 10.1136/bmj.n2635
  86. Godlee F: A strong pandemic response relies on good data. BMJ. 2021, 375:n2668. 10.1136/bmj.n2668
  87. Cardozo T, Veazey R: Informed consent disclosure to vaccine trial subjects of risk of COVID-19 vaccines worsening clinical disease. Int J Clin Pract. 2021, 75:e13795. 10.1111/ijcp.13795
  88. Annas GJ: Beyond Nazi War Crimes Experiments: The Voluntary Consent Requirement of the Nuremberg Code at 70. Am J Public Health. 2018, 108:42-46. 10.2105/AJPH.2017.304103
  89. Healy D, Germán Roux A, Dressen B: The coverage of medical injuries in company trial informed consent forms. Int J Risk Saf Med. 2023, 34:121-8. 10.3233/JRS-220043
  90. COVID Vaccine Package Insert is Blank Because Up-to-Date Information is Online. (2021). Accessed: January 15, 2024: https://apnews.com/article/fact-checking-956865924140.
  91. Science brief: COVID-19 vaccines and vaccination. CDC COVID-19 Science Briefs [Internet]. National Center for Immunization and Respiratory Diseases (NCIRD), Division of Viral Diseases, Atlanta (GA); 2021.
  92. Madewell ZJ, Yang Y, Longini IM Jr, Halloran ME, Dean NE: Household transmission of SARS-CoV-2: a systematic review and meta-analysis. JAMA Netw Open. 2020, 3:e2031756. 10.1001/jamanetworkopen.2020.31756
  93. Mostaghimi D, Valdez CN, Larson HT, Kalinich CC, Iwasaki A: Prevention of host-to-host transmission by SARS-CoV-2 vaccines. Lancet Infect Dis. 2022, 22:e52-8. 10.1016/S1473-3099(21)00472-2
  94. Lipsitch M, Kahn R: Interpreting vaccine efficacy trial results for infection and transmission. Vaccine. 2021, 39:4082-8. 10.1016/j.vaccine.2021.06.011
  95. Maeda M, Murata F, Fukuda H: Effect of COVID-19 vaccination on household transmission of SARS-CoV-2 in the Omicron era: the vaccine effectiveness, networking, and universal safety (VENUS) study. Int J Infect Dis. 2023, 134:200-6. 10.1016/j.ijid.2023.06.017
  96. Allen H, Tessier E, Turner C, et al.: Comparative transmission of SARS-CoV-2 Omicron (B.1.1.529) and Delta (B.1.617.2) variants and the impact of vaccination: national cohort study, England. Epidemiol Infect. 2023, 151:e58. 10.1017/S0950268823000420
  97. Menegale F, Manica M, Zardini A, et al.: Evaluation of waning of SARS-CoV-2 vaccine-induced immunity: a systematic review and meta-analysis. JAMA Netw Open. 2023, 6:e2310650. 10.1001/jamanetworkopen.2023.10650
  98. Abou-Saleh H, Abo-Halawa BY, Younes S, et al.: Neutralizing antibodies against SARS-CoV-2 are higher but decline faster in mRNA vaccinees compared to individuals with natural infection. J Travel Med. 2022, 29:130. 10.1093/jtm/taac130
  99. Shrestha NK, Burke PC, Nowacki AS, Simon JF, Hagen A, Gordon SM: Effectiveness of the coronavirus disease 2019 bivalent vaccine. Open Forum Infect Dis. 2023, 10:ofad209. 10.1093/ofid/ofad209
  100. Shrestha NK, Burke PC, Nowacki AS, Gordon SM: Risk of coronavirus disease 2019 (COVID-19) among those up-to-date and not up-to-date on COVID-19 vaccination by US CDC criteria. PLoS One. 2023, 18:e0293449. 10.1371/journal.pone.0293449
  101. Vaccine-Induced Immune Response to Omicron Wanes Substantially Over Time. (2022). Accessed: October 16, 2023: https://www.nih.gov/news-events/news-releases/vaccine-induced-immune-response-omicron-wanes-substantially-over-time.
  102. Bar-On YM, Goldberg Y, Mandel M, et al.: Protection by a fourth dose of BNT162b2 against Omicron in Israel. N Engl J Med. 2022, 386:1712-20. 10.1056/NEJMoa2201570
  103. Ophir Y, Shira-Raz Y, Zakov S, et al.: The efficacy of COVID-19 vaccine boosters against severe illness and deaths scientific fact or wishful myth?. J Am Phys Surg. 2023, 28:20-7.
  104. Pilz S, Theiler-Schwetz V, Trummer C, Krause R, Ioannidis JP: SARS-CoV-2 reinfections: overview of efficacy and duration of natural and hybrid immunity. Environ Res. 2022, 209:112911. 10.1016/j.envres.2022.112911
  105. Spinardi JR, Srivastava A: Hybrid immunity to SARS-CoV-2 from infection and vaccination-evidence synthesis and implications for new COVID-19 vaccines. Biomed. 2023, 11:370. 10.3390/biomedicines11020370
  106. Bigay J, Le Grand R, Martinon F, Maisonnasse P: Vaccine-associated enhanced disease in humans and animal models: Lessons and challenges for vaccine development. Front Microbiol. 2022, 13:932408. 10.3389/fmicb.2022.932408
  107. Gartlan C, Tipton T, Salguero FJ, Sattentau Q, Gorringe A, Carroll MW: Vaccine-associated enhanced disease and pathogenic human coronaviruses. Front Immunol. 2022, 13:882972. 10.3389/fimmu.2022.882972
  108. Bossche GV: The Inescapable Immune Escape Pandemic. Pierucci Publishing, Aspen, CO; 2023.
  109. Rodríguez Y, Rojas M, Beltrán S, et al.: Autoimmune and autoinflammatory conditions after COVID-19 vaccination. New case reports and updated literature review. J Autoimmun. 2022, 132:102898. 10.1016/j.jaut.2022.102898
  110. Rojas M, Herrán M, Ramírez-Santana C, Leung PS, Anaya JM, Ridgway WM, Gershwin ME: Molecular mimicry and autoimmunity in the time of COVID-19. J Autoimmun. 2023, 139:103070. 10.1016/j.jaut.2023.103070
  111. Talotta R: Do COVID-19 RNA-based vaccines put at risk of immune-mediated diseases? In reply to “potential antigenic cross-reactivity between SARS-CoV-2 and human tissue with a possible link to an increase in autoimmune diseases”. Clin Immunol. 2021, 224:108665. 10.1016/j.clim.2021.108665
  112. Akinosoglou K, Tzivaki I, Marangos M: Covid-19 vaccine and autoimmunity: awakening the sleeping dragon. Clin Immunol. 2021, 226:108721. 10.1016/j.clim.2021.108721
  113. Polykretis P, Donzelli A, Lindsay JC, et al.: Autoimmune inflammatory reactions triggered by the COVID-19 genetic vaccines in terminally differentiated tissues. Autoimmunity. 2023, 56:2259123. 10.1080/08916934.2023.2259123
  114. Appendix 2.2 Cumulative and Interval Summary Tabulation of Serious and Non-serious Adverse Reactions From Post-marketing Data Sources (BNT162B2). Pfizer Inc., New York, NY; 2022. https://www.globalresearch.ca/wp-content/uploads/2023/05/pfizer-report.pdf.
  115. Wang L, Davis PB, Kaelber DC, Volkow ND, Xu R: Comparison of mRNA-1273 and BNT162b2 vaccines on breakthrough SARS-CoV-2 infections, hospitalizations, and death during the delta-predominant period. JAMA. 2022, 327:678-80. 10.1001/jama.2022.0210
  116. Beatty AL, Peyser ND, Butcher XE, et al.: Analysis of COVID-19 vaccine type and adverse effects following vaccination. JAMA Netw Open. 2021, 4:e2140364. 10.1001/jamanetworkopen.2021.40364
  117. Kitagawa H, Kaiki Y, Sugiyama A, et al.: Adverse reactions to the BNT162b2 and mRNA-1273 mRNA COVID-19 vaccines in Japan. J Infect Chemother. 2022, 28:576-81. 10.1016/j.jiac.2021.12.034
  118. Valera-Rubio MM, Sierra-Torres MI, Castillejo García RR, Cordero-Ramos JJ, López-Márquez MR, Cruz-Salgado ÓO, Calleja-Hernández MÁM: Adverse events reported after administration of BNT162b2 and mRNA-1273 COVID-19 vaccines among hospital workers: a cross-sectional survey-based study in a Spanish hospital. Expert Rev Vaccines. 2022, 21:533-40. 10.1080/14760584.2022.2022478
  119. Chapin-Bardales J, Gee J, Myers T: Reactogenicity following receipt of mRNA-based COVID-19 vaccines. JAMA. 2021, 325:2201-2. 10.1001/jama.2021.5374
  120. Chapin-Bardales J, Myers T, Gee J, et al.: Reactogenicity within 2 weeks after mRNA COVID-19 vaccines: findings from the CDC v-safe surveillance system. Vaccine. 2021, 39:7066-73. 10.1016/j.vaccine.2021.10.019
  121. Nahab F, Bayakly R, Sexton ME, Lemuel-Clarke M, Henriquez L, Rangaraju S, Ido M: Factors associated with stroke after COVID-19 vaccination: a statewide analysis. Front Neurol. 2023, 14:1199745. 10.3389/fneur.2023.1199745
  122. Gazit S, Shlezinger R, Perez G, et al.: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) naturally acquired immunity versus vaccine-induced immunity, reinfections versus breakthrough infections: a retrospective cohort study. Clin Infect Dis. 2022, 75:e545-51. 10.1093/cid/ciac262
  123. Wang Z, Muecksch F, Schaefer-Babajew D, et al.: Naturally enhanced neutralizing breadth against SARS-CoV-2 one year after infection. Nature. 2021, 595:426-31. 10.1038/s41586-021-03696-9
  124. Gallais F, Gantner P, Bruel T, et al.: Evolution of antibody responses up to 13 months after SARS-CoV-2 infection and risk of reinfection. EBioMedicine. 2021, 71:103561. 10.1016/j.ebiom.2021.103561
  125. Hall VJ, Foulkes S, Charlett A, et al.: SARS-CoV-2 infection rates of antibody-positive compared with antibody-negative health-care workers in England: a large, multicentre, prospective cohort study (SIREN). Lancet. 2021, 397:1459-69. 10.1016/S0140-6736(21)00675-9
  126. Harvey RA, Rassen JA, Kabelac CA, et al.: Association of SARS-CoV-2 seropositive antibody test with risk of future infection. JAMA Intern Med. 2021, 181:672-9. 10.1001/jamainternmed.2021.0366
  127. Turner JS, Kim W, Kalaidina E, et al.: SARS-CoV-2 infection induces long-lived bone marrow plasma cells in humans. Nature. 2021, 595:421-5. 10.1038/s41586-021-03647-4
  128. Wang Z, Yang X, Zhong J, et al.: Exposure to SARS-CoV-2 generates T-cell memory in the absence of a detectable viral infection. Nat Commun. 2021, 12:1724. 10.1038/s41467-021-22036-z
  129. Reynolds CJ, Pade C, Gibbons JM, et al.: Immune boosting by B.1.1.529 (Omicron) depends on previous SARS-CoV-2 exposure. Science. 2022, 377:eabq1841. 10.1126/science.abq1841
  130. Patalon T, Saciuk Y, Perez G, Peretz A, Ben-Tov A, Gazit S: Dynamics of naturally acquired immunity against severe acute respiratory syndrome coronavirus 2 in children and adolescents. J Pediatr. 2023, 257:113371. 10.1016/j.jpeds.2023.02.016
  131. Sahin U, Karikó K, Türeci Ö: mRNA-based therapeutics–developing a new class of drugs. Nat Rev Drug Discov. 2014, 13:759-80. 10.1038/nrd4278
  132. Majzoub RA, Alrofaie OH, Almotreb LK, Alateeq SK, Bin Obaid FR: Parental hesitancy and attitude concerning COVID-19 vaccine and its side effects in Saudi Arabia, Eastern region. Cureus. 2023, 15:e48776. 10.7759/cureus.48776
  133. Dudley MZ, Schwartz B, Brewer J, et al.: COVID-19 vaccination attitudes, values, intentions: US parents for their children, September 2021. Vaccine. 2023, 41:7395-408. 10.1016/j.vaccine.2023.11.002
  134. Abdulkader MA Sr, Merza MA: Immediate and long-term adverse events of COVID-19 vaccines: a one-year follow-up study from the Kurdistan Region of Iraq. Cureus. 2023, 15:e47670. 10.7759/cureus.47670
  135. Sultana A, Mim SR, Saha A, et al.: Assessing the self-reported after events following immunization of COVID-19 vaccines in Turkey and Bangladesh. Environ Sci Pollut Res Int. 2023, 30:47381-93. 10.1007/s11356-023-25527-2
  136. Priority List of Adverse Events of Special Interest: COVID-19. (2020). Accessed: October 16, 2023: https://brightoncollaboration.org/priority-list-of-adverse-events-of-special-interest-covid-19/.
  137. U.S. Department of Health & Human Services (DHHS): Vaccine Side Effects. (2022). Accessed: July 5, 2023: https://www.hhs.gov/immunization/basics/safety/side-effects/index.html.
  138. Skidmore M: Covid-19 illness and vaccination experiences in social circles affect covid-19 vaccination decisions. . Sci Publ Health Pol & Law . 2023, 4:208-26.
  139. Hulscher N, Alexander PE, Amerling R, et al.: A systematic review of autopsy findings in deaths after COVID-19 vaccinations. Zenodo. 2023, 10.5281/zenodo.8120770
  140. Hulscher N, Hodkinson R, Makis W, McCullough PA: Autopsy findings in cases of fatal COVID-19 vaccine-induced myocarditis. ESC Heart Failure. 2024, 1-14. 10.1002/ehf2.14680
  141. Schwab C, Domke LM, Hartmann L, et al.: Autopsy-based histopathological characterization of myocarditis after anti-SARS-CoV-2-vaccination. Clin Res Cardiol. 2023, 112:431-440. 10.1007/s00392-022-02129-5
  142. Pathology Conference: Vaccine-induced spike protein production in the brain, organs etc., now proven [Webpage in German]. (2022). Accessed: October 16, 2023: https://report24.news/pathologie-konferenz-impfinduzierte-spike-produktion-in-gehirn-u-a-organen-nun-erwiesen/.
  143. Reutlingen Autopsy/Histology Study: Side-effects from corona vaccinations [Webpage in German]. (2020). Accessed: October 16, 2023: https://corona-blog.net/2022/03/10/reutlinger-autopsie-histologie-studie-nebenwirkungen-und-todesfaelle-durch-die-cor….
  144. Seneff S, Kyriakopoulos AM, Nigh G, McCullough PA: A potential role of the spike protein in neurodegenerative diseases: a narrative review. Cureus. 2023, 15:e34872. 10.7759/cureus.34872
  145. Blaylock RL: COVID update: What is the truth?. Surg Neurol Int. 2022, 13:167. 10.25259/SNI_150_2022
  146. Tinari S: The EMA covid-19 data leak, and what it tells us about mRNA instability. BMJ. 2021, 372:n627. 10.1136/bmj.n627
  147. Assessment Report COVID-19 Vaccine Moderna. European Medicines Agency, Amsterdam, The Netherlands; 2021. https://www.ema.europa.eu/en/documents/assessment-report/spikevax-previously-covid-19-vaccine-moderna-epar-public-ass….
  148. Assessment Report: Comirnaty. European Medicines Agency, Amsterdam, The Netherlands; 2021. https://www.ema.europa.eu/en/documents/assessment-report/comirnaty-epar-public-assessment-report_en.pdf.
  149. Milano G, Gal J, Creisson A, Chamorey E: Myocarditis and COVID-19 mRNA vaccines: a mechanistic hypothesis involving dsRNA. Future Virol. 2021, 17:10.2217/fvl-2021-0280
  150. Bruce Yu Y, Taraban MB, Briggs KT: All vials are not the same: potential role of vaccine quality in vaccine adverse reactions. Vaccine. 2021, 39:6565-9. 10.1016/j.vaccine.2021.09.065
  151. Speicher DJ, Rose J, Gutschi, Wiseman DM, McKernan K: DNA fragments detected in monovalent and bivalent Pfizer/BioNTech and Moderna modRNA COVID-19 vaccines from Ontario, Canada: exploratory dose response relationship with serious adverse events [PREPRINT]. OSFPreprints. 2023, 10.31219/osf.io/mjc97
  152. McKernan K, Helbert Y, Kane LT, McLaughlin S: Sequencing of bivalent Moderna and Pfizer mRNA vaccines reveals nanogram to microgram quantities of expression vector dsDNA per dose [PREPRINT]. OSFPreprints. 2023, 10.31219/osf.io/b9t7m
  153. Senate Hearing On Dangerous and Potentially Fatal Errors Within The Methods of Vaccine Distribution.. ( September 20, 2023.). Accessed: January 17, 2023: https://arvozylo.medium.com/senate-hearing-on-dangerous-and-potentially-fatal-errors-within-the-methods-of-vaccine-di….
  154. Health Canada Confirms Undisclosed Presence of DNA Sequence in Pfizer Shot. (2023). Accessed: December 20, 2023: https://www.theepochtimes.com/world/exclusive-health-canada-confirms-undisclosed-presence-of-dna-sequence-in-pfizer-s….
  155. Vilchez RA, Butel JS: Emergent human pathogen simian virus 40 and its role in cancer. Clin Microbiol Rev. 2004, 17:495-508. 10.1128/CMR.17.3.495-508.2004
  156. Rotondo JC, Mazzoni E, Bononi I, Tognon M, Martini F: Association between simian virus 40 and human tumors. Front Oncol. 2019, 9:670. 10.3389/fonc.2019.00670
  157. Vilchez RA, Kozinetz CA, Arrington AS, et al.: Simian virus 40 in human cancers. Am J Med. 2003, 114:675-84. 10.1016/s0002-9343(03)00087-1
  158. Qi F, Carbone M, Yang H, Gaudino G: Simian virus 40 transformation, malignant mesothelioma and brain tumors. Expert Rev Respir Med. 2011, 5:683-97. 10.1586/ers.11.51
  159. Li S, MacLaughlin FC, Fewell JG, et al.: Muscle-specific enhancement of gene expression by incorporation of SV40 enhancer in the expression plasmid. Gene Ther. 2001, 8:494-7. 10.1038/sj.gt.3301419
  160. Orient JM: Beyond negative evidence: Lessons from the disputes on DNA contamination of COVID-19 vaccines. J Am Phys Surg. 2023, 28:106-12.
  161. Florida Surgeon General Calls for Halt in Use of COVID mRNA Vaccines. (2024). Accessed: January 3, 2024: https://childrenshealthdefense.org/defender/florida-joseph-ladapo-halt-covid-mrna-vaccines/.
  162. Florida Surgeon General Calls for a Complete Halt on Pfizer and Moderna mRNA Vaccines. (2024). Accessed: January 4, 2024: https://petermcculloughmd.substack.com/p/breaking-florida-surgeon-general.
  163. FDA Fails to Address DNA Adulteration Concerns. (2023). Accessed: December 17, 2023: https://brownstone.org/articles/fda-fails-to-address-dna-adulteration-concerns/.
  164. WCH Expert Panel Finds Cancer-Promoting DNA Contamination in Covid-19 Vaccines. (2023). Accessed: December 20, 2023: https://worldcouncilforhealth.org/news/news-releases/dna-contamination-covid-19-vaccines/.
  165. Block J: Covid-19: researchers face wait for patient level data from Pfizer and Moderna vaccine trials. BMJ. 2022, 378:o1731. 10.1136/bmj.o1731
  166. European Medicines Agency: Comirnaty. (2020). Accessed: December 20, 2023: https://www.ema.europa.eu/en/medicines/human/EPAR/comirnaty.
  167. Nance KD, Meier JL: Modifications in an emergency: the role of N1-methylpseudouridine in COVID-19 vaccines. ACS Cent Sci. 2021, 7:748-56. 10.1021/acscentsci.1c00197
  168. Morais P, Adachi H, Yu YT: The critical contribution of pseudouridine to mRNA COVID-19 vaccines. Front Cell Dev Biol. 2021, 9:789427. 10.3389/fcell.2021.789427
  169. That Substack About N1-Methylpseudouridines and Frameshifting. (2023). Accessed: December 12, 2023: https://jessicar.substack.com/p/that-substack-about-n1-methylpseudouridines.
  170. Mulroney TE, Pöyry T, Yam-Puc JC, et al.: N(1)-methylpseudouridylation of mRNA causes +1 ribosomal frameshifting. Nature. 2024, 625:189-94. 10.1038/s41586-023-06800-3
  171. Vojdani A, Vojdani E, Kharrazian D: Reaction of human monoclonal antibodies to SARS-CoV-2 proteins with tissue antigens: Implications for autoimmune diseases. Front Immunol. 2020, 11:617089. 10.3389/fimmu.2020.617089
  172. Kanduc D, Shoenfeld Y: Molecular mimicry between SARS-CoV-2 spike glycoprotein and mammalian proteomes: implications for the vaccine. Immunol Res. 2020, 68:310-3. 10.1007/s12026-020-09152-6
  173. VAERS Reports Contradict Claim of No AEs in Frameshifting Context. (2023). Accessed: December 16, 2023: https://jessicar.substack.com/p/vaers-reports-contradict-claim-of.
  174. Wiseman DM, Gutschi LM, Speicher DJ, et al.: Ribosomal frameshifting and misreading of mRNA in COVID-19 vaccines produces “off-target” proteins and immune responses eliciting safety concerns: Comment on UK study by Mulroney et al. [PREPRINT]. OSFPreprints. 10.31219/osf.io/nt8jh
  175. Bellavite P, Ferraresi A, Isidoro C: Immune response and molecular mechanisms of cardiovascular adverse effects of spike proteins from SARS-CoV-2 and mRNA vaccines. Biomed. 2023, 11:451. 10.3390/biomedicines11020451
  176. Giannotta G, Murrone A, Giannotta N: COVID-19 mRNA vaccines: the molecular basis of some adverse events. Vaccines (Basel). 2023, 11:747. 10.3390/vaccines11040747
  177. Seneff S, Nigh G, Kyriakopoulos AM, McCullough PA: Response to Barriere et al. Food Chem Toxicol. 2023, 178:113898. 10.1016/j.fct.2023.113898
  178. Halma MTJ, Rose J, Lawrie T: The novelty of mRNA viral vaccines and potential harms: a scoping review. J. 2023, 6:220-35. 10.3390/j6020017
  179. Ostrowski SR, Søgaard OS, Tolstrup M, Stærke NB, Lundgren J, Østergaard L, Hvas AM: Inflammation and platelet activation after COVID-19 vaccines – possible mechanisms behind vaccine-induced immune thrombocytopenia and thrombosis. Front Immunol. 2021, 12:779453. 10.3389/fimmu.2021.779453
  180. Parry PI, Lefringhausen A, Turni C, Neil CJ, Cosford R, Hudson NJ, Gillespie J: ’Spikeopathy’: COVID-19 spike protein is pathogenic, from both virus and vaccine mRNA. Biomed. 2023, 11:2287. 10.3390/biomedicines11082287
  181. Kostoff RN, Kanduc D, Porter AL, et al.: Vaccine- and natural infection-induced mechanisms that could modulate vaccine safety. Toxicol Rep. 2020, 7:1448-58. 10.1016/j.toxrep.2020.10.016
  182. Devaux CA, Camoin-Jau L: Molecular mimicry of the viral spike in the SARS-CoV-2 vaccine possibly triggers transient dysregulation of ACE2, leading to vascular and coagulation dysfunction similar to SARS-CoV-2 infection. Viruses. 2023, 15:1045. 10.3390/v15051045
  183. Kanduc D: From anti-severe acute respiratory syndrome coronavirus 2 immune response to cancer onset via molecular mimicry and cross-reactivity. Glob Med Genet. 2021, 8:176-82. 10.1055/s-0041-1735590
  184. Lyons-Weiler J: Pathogenic priming likely contributes to serious and critical illness and mortality in COVID-19 via autoimmunity. J Transl Autoimmun. 2020, 3:100051. 10.1016/j.jtauto.2020.100051
  185. Syenina A, Gan ES, Toh JZ, et al.: Adverse effects following anti-COVID-19 vaccination with mRNA-based BNT162b2 are alleviated by altering the route of administration and correlate with baseline enrichment of T and NK cell genes. PLoS Biol. 2022, 20:e3001643. 10.1371/journal.pbio.3001643
  186. Hou X, Zaks T, Langer R, Dong Y: Lipid nanoparticles for mRNA delivery. Nat Rev Mater. 2021, 6:1078-94. 10.1038/s41578-021-00358-0
  187. Cui S, Wang Y, Gong Y, et al.: Correlation of the cytotoxic effects of cationic lipids with their headgroups. Toxicol Res (Camb). 2018, 7:473-9. 10.1039/c8tx00005k
  188. Ashman RB, Blanden RV, Ninham BW, Evans DF: Interaction of amphiphilic aggregates with cells of the immune system. Immunol Today. 1986, 7:278-83. 10.1016/0167-5699(86)90010-1
  189. Matzinger P: Tolerance, danger, and the extended family. Annu Rev Immunol. 1994, 12:991-1045. 10.1146/annurev.iy.12.040194.005015
  190. Sellaturay P, Nasser S, Ewan P: Polyethylene glycol-induced systemic allergic reactions (anaphylaxis). J Allergy Clin Immunol Pract. 2021, 9:670-5. 10.1016/j.jaip.2020.09.029
  191. Bigini P, Gobbi M, Bonati M, Clavenna A, Zucchetti M, Garattini S, Pasut G: The role and impact of polyethylene glycol on anaphylactic reactions to COVID-19 nano-vaccines. Nat Nanotechnol. 2021, 16:1169-71. 10.1038/s41565-021-01001-3
  192. Taieb A, Mounira EE: Pilot findings on SARS-CoV-2 vaccine-induced pituitary diseases: a mini review from diagnosis to pathophysiology. Vaccines (Basel). 2022, 10:2004. 10.3390/vaccines10122004
  193. Aliberti L, Gagliardi I, Rizzo R, et al.: Pituitary apoplexy and COVID-19 vaccination: a case report and literature review. Front Endocrinol (Lausanne). 2022, 13:1035482. 10.3389/fendo.2022.1035482
  194. Yan HY, Young YH: Vertigo/dizziness following COVID-19 vaccination. Am J Otolaryngol. 2023, 44:103723. 10.1016/j.amjoto.2022.103723
  195. Krauson AJ, Casimero FV, Siddiquee Z, Stone JR: Duration of SARS-CoV-2 mRNA vaccine persistence and factors associated with cardiac involvement in recently vaccinated patients. NPJ Vaccines. 2023, 8:141. 10.1038/s41541-023-00742-7
  196. Khan S, Shafiei MS, Longoria C, Schoggins JW, Savani RC, Zaki H: SARS-CoV-2 spike protein induces inflammation via TLR2-dependent activation of the NF-κB pathway. Elife. 2021, 10:68563. 10.7554/eLife.68563
  197. Meyer K, Patra T, Vijayamahantesh, Ray R: SARS-CoV-2 spike protein induces paracrine senescence and leukocyte adhesion in endothelial cells. J Virol. 2021, 95:e0079421. 10.1128/JVI.00794-21
  198. Nyström S, Hammarström P: Amyloidogenesis of SARS-CoV-2 spike protein. J Am Chem Soc. 2022, 144:8945-50. 10.1021/jacs.2c03925
  199. Cocco N, Leibundgut G, Pelliccia F, et al.: Arrhythmias after COVID-19 vaccination: have we left all stones unturned?. Int J Mol Sci. 2023, 24:10405. 10.3390/ijms241210405
  200. Kim H, Ahn HS, Hwang N, et al.: Epigenomic landscape exhibits interferon signaling suppression in the patient of myocarditis after BNT162b2 vaccination. Sci Rep. 2023, 13:8926. 10.1038/s41598-023-36070-y
  201. Bozkurt B: Shedding light on mechanisms of myocarditis with COVID-19 mRNA vaccines. Circulation. 2023, 147:877-80. 10.1161/CIRCULATIONAHA.123.063396
  202. Yonker LM, Swank Z, Bartsch YC, et al.: Circulating spike protein detected in post- COVID-19 mRNA vaccine myocarditis. Circulation. 2023, 147:867-76. 10.1161/CIRCULATIONAHA.122.061025
  203. Baumeier C, Aleshcheva G, Harms D, et al.: Intramyocardial inflammation after COVID-19 vaccination: an endomyocardial biopsy-proven case series. Int J Mol Sci. 2022, 23:6940. 10.3390/ijms23136940
  204. Cadegiani FA: Catecholamines are the key trigger of COVID-19 mRNA vaccine-induced myocarditis: a compelling hypothesis supported by epidemiological, anatomopathological, molecular, and physiological findings. Cureus. 2022, 14:e27883. 10.7759/cureus.27883
  205. Kim N, Jung Y, Nam M, et al.: Angiotensin II affects inflammation mechanisms via AMPK-related signalling pathways in HL-1 atrial myocytes. Sci Rep. 2017, 7:10328. 10.1038/s41598-017-09675-3
  206. McKinney EF, Lee JC, Jayne DR, Lyons PA, Smith KG: T-cell exhaustion, co-stimulation and clinical outcome in autoimmunity and infection. Nature. 2015, 523:612-6. 10.1038/nature14468
  207. Liu J, Wang J, Xu J, et al.: Comprehensive investigations revealed consistent pathophysiological alterations after vaccination with COVID-19 vaccines. Cell Discov. 2021, 7:99. 10.1038/s41421-021-00329-3
  208. Collier JL, Weiss SA, Pauken KE, Sen DR, Sharpe AH: Not-so-opposite ends of the spectrum: CD8(+) T cell dysfunction across chronic infection, cancer and autoimmunity. Nat Immunol. 2021, 22:809-19. 10.1038/s41590-021-00949-7
  209. Irrgang P, Gerling J, Kocher K, et al.: Class switch toward noninflammatory, spike-specific IgG4 antibodies after repeated SARS-CoV-2 mRNA vaccination. Sci Immunol. 2023, 8:eade2798. 10.1126/sciimmunol.ade2798
  210. Uversky VN, Redwan EM, Makis W, Rubio-Casillas A: IgG4 antibodies induced by repeated vaccination may generate immune tolerance to the SARS-CoV-2 spike protein. Vaccines (Basel). 2023, 11:99. 10.3390/vaccines11050991
  211. Chevaisrakul P, Lumjiaktase P, Kietdumrongwong P, Chuatrisorn I, Chatsangjaroen P, Phanuphak N: Hybrid and herd immunity 6 months after SARS-CoV-2 exposure among individuals from a community treatment program. Sci Rep. 2023, 13:763. 10.1038/s41598-023-28101-5
  212. Loacker L, Kimpel J, Bánki Z, Schmidt CQ, Griesmacher A, Anliker M: Increased PD-L1 surface expression on peripheral blood granulocytes and monocytes after vaccination with SARS-CoV2 mRNA or vector vaccine. Clin Chem Lab Med. 2023, 61:e17-9.
  213. Jiang X, Wang J, Deng X, et al.: Role of the tumor microenvironment in PD-L1/PD-1-mediated tumor immune escape. Mol Cancer. 2019, 18:10. 10.1186/s12943-018-0928-4
  214. Ai L, Xu A, Xu J: Roles of PD-1/PD-L1 pathway: signaling, cancer, and beyond. Adv Exp Med Biol. 2020, 1248:33-59. 10.1007/978-981-15-3266-5_3
  215. Goldman S, Bron D, Tousseyn T, et al.: Rapid progression of angioimmunoblastic T cell lymphoma following BNT162b2 mRNA vaccine booster shot: a case report. Front Med (Lausanne). 2021, 8:798095. 10.3389/fmed.2021.798095
  216. Sekizawa A, Hashimoto K, Kobayashi S, et al.: Rapid progression of marginal zone B-cell lymphoma after COVID-19 vaccination (BNT162b2): a case report. Front Med (Lausanne). 2022, 9:963393. 10.3389/fmed.2022.963393
  217. Tachita T, Takahata T, Yamashita S, et al.: Newly diagnosed extranodal NK/T-cell lymphoma, nasal type, at the injected left arm after BNT162b2 mRNA COVID-19 vaccination. Int J Hematol. 2023, 118:503-7. 10.1007/s12185-023-03607-w
  218. Zamfir MA, Moraru L, Dobrea C, et al.: Hematologic malignancies diagnosed in the context of the mRNA COVID-19 vaccination campaign: a report of two cases. Medicina (Kaunas). 2022, 58:874. 10.3390/medicina58070874
  219. Angues VR, Bustos PY: SARS-CoV-2 vaccination and the multi-hit hypothesis of oncogenesis. Cureus. 2023, 15:e50703. 10.7759/cureus.50703
  220. Echaide M, Labiano I, Delgado M, et al.: Immune profiling uncovers memory T-cell responses with a Th17 signature in cancer patients with previous SARS-CoV-2 infection followed by mRNA vaccination. Cancers (Basel). 2022, 14:4464. 10.3390/cancers14184464
  221. Gandolfo C, Anichini G, Mugnaini M, et al.: Overview of anti-SARS-CoV-2 immune response six months after BNT162b2 mRNA vaccine. Vaccines (Basel). 2022, 10:171. 10.3390/vaccines10020171
  222. Echaide M, Chocarro de Erauso L, Bocanegra A, Blanco E, Kochan G, Escors D: mRNA vaccines against SARS-CoV- 2: advantages and caveats. Int J Mol Sci. 2023, 24:5944. 10.3390/ijms24065944
  223. Russell MW, Mestecky J: Mucosal immunity: the missing link in comprehending SARS-CoV-2 infection and transmission. Front Immunol. 2022, 13:957107. 10.3389/fimmu.2022.957107
  224. Lavelle EC, Ward RW: Mucosal vaccines – fortifying the frontiers. Nat Rev Immunol. 2022, 22:236-50. 10.1038/s41577-021-00583-2
  225. Primorac D, Vrdoljak K, Brlek P, et al.: Adaptive immune responses and immunity to SARS-CoV-2. Front Immunol. 2022, 13:848582. 10.3389/fimmu.2022.848582
  226. Gould VM, Francis JN, Anderson KJ, Georges B, Cope AV, Tregoning JS: Nasal IgA provides protection against human influenza challenge in volunteers with low serum influenza antibody titre. Front Microbiol. 2017, 8:900. 10.3389/fmicb.2017.00900
  227. Mettelman RC, Allen EK, Thomas PG: Mucosal immune responses to infection and vaccination in the respiratory tract. Immunity. 2022, 55:749-80. 10.1016/j.immuni.2022.04.013
  228. Alu A, Chen L, Lei H, Wei Y, Tian X, Wei X: Intranasal COVID-19 vaccines: from bench to bed. EBioMedicine. 2022, 76:103841. 10.1016/j.ebiom.2022.103841
  229. Feng A, Obolski U, Stone L, He D: Modelling COVID-19 vaccine breakthrough infections in highly vaccinated Israel-the effects of waning immunity and third vaccination dose. PLOS Glob Public Health. 2022, 2:e0001211. 10.1371/journal.pgph.0001211
  230. Lyke KE, Atmar RL, Islas CD, et al.: Rapid decline in vaccine-boosted neutralizing antibodies against SARS-CoV-2 Omicron variant. Cell Rep Med. 2022, 3:100679. 10.1016/j.xcrm.2022.100679
  231. Tamandjou C, Auvigne V, Schaeffer J, Vaux S, Parent du Châtelet I: Effectiveness of second booster compared to first booster and protection conferred by previous SARS-CoV-2 infection against symptomatic Omicron BA.2 and BA.4/5 in France. Vaccine. 2023, 41:2754-60. 10.1016/j.vaccine.2023.03.031
  232. McCarthy MW: Original antigen sin and COVID-19: implications for seasonal vaccination. Expert Opin Biol Ther. 2022, 22:1353-8. 10.1080/14712598.2022.2137402
  233. Noori M, Nejadghaderi SA, Rezaei N: “Original antigenic sin”: a potential threat beyond the development of booster vaccination against novel SARS-CoV-2 variants. Infect Control Hosp Epidemiol. 2022, 43:1091-2. 10.1017/ice.2021.199
  234. Lv H, Wu NC, Tsang OT, et al.: Cross-reactive antibody response between SARS-CoV-2 and SARS-CoV infections. Cell Rep. 2020, 31:107725. 10.1016/j.celrep.2020.107725
  235. Shrock E, Fujimura E, Kula T, et al.: Viral epitope profiling of COVID-19 patients reveals cross-reactivity and correlates of severity. Science. 2020, 370:4250. 10.1126/science.abd4250
  236. Röltgen K, Nielsen SC, Silva O, et al.: Immune imprinting, breadth of variant recognition, and germinal center response in human SARS-CoV-2 infection and vaccination. Cell. 2022, 185:1025-1040.e14. 10.1016/j.cell.2022.01.018
  237. Samanovic MI, Cornelius AR, Gray-Gaillard SL, et al.: Robust immune responses after one dose of BNT162b2 mRNA vaccine dose in SARS-CoV-2 experienced individuals [PREPRINT]. medRxiv. 2021, 10.1101/2021.02.07.21251311
  238. Offit PA: Bivalent Covid-19 vaccines – a cautionary tale. N Engl J Med. 2023, 388:481-3. 10.1056/NEJMp2215780
  239. Reina J: Possible effect of the “original antigenic sin” in vaccination against new variants of SARS-CoV-2. Rev Clin Esp (Barc). 2022, 222:91-2. 10.1016/j.rceng.2021.05.005
  240. Gao FX, Wu RX, Shen MY, et al.: Extended SARS-CoV-2 RBD booster vaccination induces humoral and cellular immune tolerance in mice. iScience. 2022, 25:105479. 10.1016/j.isci.2022.105479
  241. Shahhosseini N, Babuadze GG, Wong G, Kobinger GP: Mutation signatures and in silico docking of novel SARS-CoV-2 variants of concern. Microorganisms. 2021, 9:926. 10.3390/microorganisms9050926
  242. Beeraka NM, Sukocheva OA, Lukina E, Liu J, Fan R: Development of antibody resistance in emerging mutant strains of SARS CoV-2: impediment for COVID-19 vaccines. Rev Med Virol. 2022, 32:e2346. 10.1002/rmv.2346
  243. Dumonteil E, Herrera C: Polymorphism and selection pressure of SARS-CoV-2 vaccine and diagnostic antigens: implications for immune evasion and serologic diagnostic performance. Pathogens. 2020, 9:584. 10.3390/pathogens9070584
  244. López-Cortés GI, Palacios-Pérez M, Veledíaz HF, Hernández-Aguilar M, López-Hernández GR, Zamudio GS, José MV: The spike protein of SARS-CoV-2 is adapting because of selective pressures. Vaccines (Basel). 2022, 10:864. 10.3390/vaccines10060864
  245. Chakraborty C, Sharma AR, Bhattacharya M, Lee SS: A detailed overview of immune escape, antibody escape, partial vaccine escape of SARS-CoV-2 and their emerging variants with escape mutations. Front Immunol. 2022, 13:801522. 10.3389/fimmu.2022.801522
  246. Seneff S, Nigh G: Worse than the disease? Reviewing some possible unintended consequences of the mRNA vaccines against COVID-19. Int J Vaccine Theory Pract Res. 2021, 2:38-79. 10.56098/ijvtpr.v2i1.23
  247. Azim Majumder MA, Razzaque MS: Repeated vaccination and ‘vaccine exhaustion’: relevance to the COVID-19 crisis. Expert Rev Vaccines. 2022, 21:1011-4. 10.1080/14760584.2022.2071705
  248. Dhama K, Nainu F, Frediansyah A, et al.: Global emerging Omicron variant of SARS-CoV-2: impacts, challenges and strategies. J Infect Public Health. 2023, 16:4-14. 10.1016/j.jiph.2022.11.024
  249. Krause PR, Fleming TR, Longini IM, et al.: Placebo-controlled trials of Covid-19 vaccines – why we still need them. N Engl J Med. 2021, 384:e2. 10.1056/NEJMp2033538
  250. Historical Vaccine Safety Concerns. (2020). Accessed: October 16, 2023: https://www.cdc.gov/vaccinesafety/concerns/concerns-history.html.
  251. Rotavirus Vaccine (RotaShield®) and Intussusception. (1999). Accessed: October 16, 2023: https://www.cdc.gov/vaccines/vpd-vac/rotavirus/vac-rotashield-historical.htm.
  252. Pfizer: Periodic Safety Update Report #3 for Active Substance: COVID-19 mRNA Vaccine, BNT162b2. BioNTech Manufacturing GmbH, Mainz, Germany; 2022. https://tkp.at/wp-content/uploads/2023/03/3.PSUR-1.pdf.
  253. Horowitz: Confidential Pfizer document shows the company observed 1.6 million adverse events covering nearly every organ system. (2023). Accessed: October 16, 2023: https://www.conservativereview.com/horowitz-confidential-pfizer-document-shows-the-company-observed-1-6-million-adver….
  254. Aarstad J, Kvitastein OA: Is there a link between the 2021 COVID-19 vaccination uptake in Europe and 2022 excess all-cause mortality?. Asian Pac J Health Sci. 2022, 2023:25-31. 10.21276/apjhs.2023.10.1.6
  255. Rancourt DG, Baudin M, Hickey J, Mercier J: COVID-19 Vaccine-Associated Mortality in the Southern Hemisphere. Correlation Research in the Public Interest, Ontario, Canada; 2023.
  256. Rancourt DG, Baudin M, Hickey J, Mercier J: Age-Stratified COVID-19 Vaccine-Dose Fatality Rate for Israel and Australia. Correlation Research in the Public Interest, Ontario, Canada;
  257. Pfizer-BioNTech Submits New COVID Vaccine Booster Targeting BA.5 to the FDA for Authorization. (2022). Accessed: October 16, 2023: https://www.usatoday.com/story/news/health/2022/08/22/pfizer-covid-booster-omicron-submitted-fda-emergency-authorizat….
  258. Bardosh K, Krug A, Jamrozik E, et al.: COVID-19 vaccine boosters for young adults: a risk benefit assessment and ethical analysis of mandate policies at universities. J Med Ethics. 2022, 10.1136/jme-2022-108449
  259. Palmer M, Bhakdi S, Wodarg W: On the Use of the Pfizer and the Moderna COVID-19 mRNA Vaccines in Children and Adolescents. Doctors for COVID Ethics, Amsterdam, The Netherlands; 2022.
  260. Mansanguan S, Charunwatthana P, Piyaphanee W, Dechkhajorn W, Poolcharoen A, Mansanguan C: Cardiovascular manifestation of the BNT162b2 mRNA COVID-19 vaccine in adolescents. Trop Med Infect Dis. 2022, 7:196. 10.3390/tropicalmed7080196
  261. Buergin N, Lopez-Ayala P, Hirsiger JR, et al.: Sex-specific differences in myocardial injury incidence after COVID-19 mRNA-1273 booster vaccination. Eur J Heart Fail. 2023, 25:1871-81. 10.1002/ejhf.2978
  262. Singer ME, Taub IB, Kaelber DC: Risk of myocarditis from COVID-19 infection in people under age 20: a population-based analysis [PREPRINT]. medRxiv. 2022, 10.1101/2021.07.23.21260998
  263. Amir M, Latha S, Sharma R, Kumar A: Association of cardiovascular events with COVID-19 vaccines using vaccine adverse event reporting system (VAERS): a retrospective study. Curr Drug Saf. 2023, 10.2174/0115748863276904231108095255
  264. Hurley P, Krohn M, LaSala T, et al.: Group Life COVID-19 Mortality Survey Report. Society of Actuaries Research Institute, Schaumburg, Illinois; 2023. https://www.soa.org/4ac0fd/globalassets/assets/files/resources/experience-studies/2023/group-life-covid-mort-06-23.pdf.
  265. Quarterly Excess Death Rate Analysis. (2022). Accessed: December 13, 2023: https://phinancetechnologies.com/HumanityProjects/Quarterly%20Excess%20Death%20Rate%20Analysis%20-%20US.htm.
  266. Irrefutable Evidence Vaccine Mandates Killed & Disabled Countless Americans. (2022). Accessed: July 7, 2023: https://twitter.com/NFSC_HAGnews/status/1640624477527769088.
  267. Polykretis P, McCullough PA: Rational harm‐benefit assessments by age group are required for continued COVID‐19 vaccination. Scand J Immunol. 2022, e13242. 10.1111/sji.13242
  268. Ittiwut C, Mahasirimongkol S, Srisont S, et al.: Genetic basis of sudden death after COVID-19 vaccination in Thailand. Heart Rhythm. 2022, 19:1874-9. 10.1016/j.hrthm.2022.07.019
  269. Lai CC, Chen IT, Chao CM, Lee PI, Ko WC, Hsueh PR: COVID-19 vaccines: concerns beyond protective efficacy and safety. Expert Rev Vaccines. 2021, 20:1013-25. 10.1080/14760584.2021.1949293
  270. Lee S, Lee CH, Seo MS, Yoo JI: Integrative analyses of genes about venous thromboembolism: An umbrella review of systematic reviews and meta-analyses. Medicine (Baltimore). 2022, 101:e31162. 10.1097/MD.0000000000031162
  271. Why is Life Expectancy in the US Lower Than in Other Rich Countries?. (2020). Accessed: December 13, 2023: https://ourworldindata.org/us-life-expectancy-low.
  272. Rancourt DG, Baudin M, Mercier J: COVID-Period mass vaccination campaign and public health disaster in the USA from age/state-resolved all-cause mortality by time, age-resolved vaccine delivery by time, and socio-geo-economic data [PREPRINT]. ResearchGate. 2022,
  273. Sennfält S, Norrving B, Petersson J, Ullberg T: Long-term survival and function after stroke: a longitudinal observational study from the Swedish stroke register. Stroke. 2019, 50:53-61. 10.1161/STROKEAHA.118.022913
  274. Yu CK, Tsao S, Ng CW, et al.: Cardiovascular assessment up to one year after COVID-19 vaccine-associated myocarditis. Circulation. 2023, 148:436-9. 10.1161/CIRCULATIONAHA.123.064772
  275. Barmada A, Klein J, Ramaswamy A, et al.: Cytokinopathy with aberrant cytotoxic lymphocytes and profibrotic myeloid response in SARS-CoV-2 mRNA vaccine-associated myocarditis. Sci Immunol. 2023, 8:eadh3455. 10.1126/sciimmunol.adh3455
  276. Brociek E, Tymińska A, Giordani AS, Caforio AL, Wojnicz R, Grabowski M, Ozierański K: Myocarditis: etiology, pathogenesis, and their implications in clinical practice. Biology (Basel). 2023, 12:874. 10.3390/biology12060874
  277. Davis HE, McCorkell L, Vogel JM, Topol EJ: Long COVID: major findings, mechanisms and recommendations. Nat Rev Microbiol. 2023, 21:133-46. 10.1038/s41579-022-00846-2
  278. Yong SJ, Liu S: Proposed subtypes of post-COVID-19 syndrome (or long-COVID) and their respective potential therapies. Rev Med Virol. 2022, 32:e2315. 10.1002/rmv.2315
  279. Raveendran AV, Jayadevan R, Sashidharan S: Long COVID: an overview. Diabetes Metab Syndr. 2021, 15:869-75. 10.1016/j.dsx.2021.04.007
  280. Arjun MC, Singh AK, Pal D, et al.: Characteristics and predictors of long COVID among diagnosed cases of COVID-19. PLoS One. 2022, 17:e0278825. 10.1371/journal.pone.0278825
  281. Hulscher N, Procter BC, Wynn C, McCullough PA: Clinical approach to post-acute sequelae after COVID-19 infection and vaccination. Cureus. 2023, 15:e49204. 10.7759/cureus.49204
  282. Vogel G, Couzin-Frankel J: Rare link between coronavirus vaccines and Long Covid-like illness starts to gain acceptance. Science. 2023, 381:6653. 10.1126/science.adj5565
  283. Brogna C, Cristoni S, Marino G, et al.: Detection of recombinant Spike protein in the blood of individuals vaccinated against SARS-CoV-2: possible molecular mechanisms. Proteomics Clin Appl. 2023, 17:e2300048. 10.1002/prca.202300048
  284. Craddock V, Mahajan A, Spikes L, et al.: Persistent circulation of soluble and extracellular vesicle-linked Spike protein in individuals with postacute sequelae of COVID-19. J Med Virol. 2023, 95:e28568. 10.1002/jmv.28568
  285. Dhuli K, Medori MC, Micheletti C, et al.: Presence of viral spike protein and vaccinal spike protein in the blood serum of patients with long-COVID syndrome. Eur Rev Med Pharmacol Sci. 2023, 27:13-9. 10.26355/eurrev_202312_34685
  286. Diexer S, Klee B, Gottschick C, et al.: Association between virus variants, vaccination, previous infections, and post-COVID-19 risk. Int J Infect Dis. 2023, 136:14-21. 10.1016/j.ijid.2023.08.019
  287. Scholkmann F, May CA: COVID-19, post-acute COVID-19 syndrome (PACS, “long COVID”) and post-COVID-19 vaccination syndrome (PCVS, “post-COVIDvac-syndrome”): similarities and differences. Pathol Res Pract. 2023, 246:154497. 10.1016/j.prp.2023.154497
  288. Rodziewicz TL, Houseman B, Hipskind JE: Medical error reduction and prevention. StatPearls [Internet]. StatPearls Publishing, Treasure Island (FL); 2023.
  289. Oyebode F: Clinical errors and medical negligence. Med Princ Pract. 2013, 22:323-33. 10.1159/000346296
  290. Kohn LT, Corrigan JM, Donaldson MS: To Err Is Human: Building a Safer Health System. The National Academies Press, Washington, DC; 2000. 10.17226/9728
  291. How Many Deaths Were Caused by the Covid Vaccines?. (2023). Accessed: 2024: https://wherearethenumbers.substack.com/p/how-many-deaths-were-caused-by-the.
  292. Lazarus R, Baos S, Cappel-Porter H, et al.: Safety and immunogenicity of concomitant administration of COVID-19 vaccines (ChAdOx1 or BNT162b2) with seasonal influenza vaccines in adults in the UK (ComFluCOV): a multicentre, randomised, controlled, phase 4 trial. Lancet. 2021, 398:2277-87. 10.1016/S0140-6736(21)02329-1
  293. Ioannidis JP: Infection fatality rate of COVID-19 inferred from seroprevalence data. Bull World Health Organ. 2021, 99:19-33F. 10.2471/BLT.20.265892
(omissis)

Commenti (1)

  • Buona sera io spero che dopo questa ennesima disamina i governi si interroghi e cessino l’uso di questi ” veleni” ; ma la storia ci insegna che questo messaggio dovrebbe
    arrivare dentro la gente attraverso i media ,giornali televisione e i politici e questo non succederà ,non ammetteranno MAI i loro errori e le colpe di cui si sono macchiati

Lascia un commento

Il tuo indirizzo email non sarà pubblicato. I campi obbligatori sono contrassegnati *

Logo Fronte di Liberazione Nazionale con Nicola Franzoni

Partito Politico Registrato: Fronte di Liberazione Nazionale | Sigla Registrata : FLN | Simbolo Registrato

sede legale: viale Colombo 10 Marina di Carrara

partito@frontediliberazionenazionale.it


©2022 Fronte di Liberazione Nazionale